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Abstract: The study of tropical tropospheric disturbances has led to important challenges from both
observational and theoretical points of view. In particular, the observed wavenumber-frequency
spectrum of tropical oscillations has helped bridge the gap between observations and the linear
theory of equatorial waves. In this study, we obtained a similar wavenumber-frequency spectrum
for each equatorial wave type by performing a normal mode function (NMF) decomposition of
global Era–Interim reanalysis data. The NMF basis used here is provided by the eigensolutions of
the primitive equations in spherical coordinates as linearized around a resting background state.
In this methodology, the global multi-level horizontal velocity and geopotential height fields are
projected onto the normal mode functions, characterized by a vertical mode, a zonal wavenumber, a
meridional quantum index, and a mode type, namely, Rossby, Kelvin, mixed Rossby-gravity, and
westward/eastward propagating inertio-gravity modes. The horizontal velocity and geopotential
height fields associated with each mode type are then reconstructed in the physical space, as well
as their corresponding filtered versions defined according to the vertical mode classes that exhibit
barotropic and baroclinic structures within the troposphere. The results reveal expected structures,
such as the dominant global-scale Rossby and Kelvin waves constituting the intraseasonal frequency
associated with the Madden–Julian Oscillation. On the other hand, a number of unexpected fea-
tures, such as eastward propagating westward inertio-gravity waves, are revealed by our observed
200 hPa zonal wind spectrum. Among all possible nonlinear processes, we focus on the analysis of
the interaction between Kelvin and westward inertio-gravity waves, providing evidence for their
coupling. Apart from the nonlinearity, we discuss the potential roles of a vertically/meridionally
varying background state as well as the coupling with moist convection in explaining the departures
of the observed spectra from the corresponding linear equatorial wave theory.

Keywords: normal modes; convectively coupled equatorial waves

1. Introduction

The study of tropical tropospheric oscillations is one of incredible complexity due to
the interaction of multiple scales, strong nonlinearities, and multiple competing physical
phenomena [1], including the Madden–Julian Oscillation (MJO) [2], tropical convection [3],
convectively coupled waves [4], interactions with the extra-tropics [5], interactions with the
stratosphere [6], tropical cyclones [7], and tropical rainfall [8,9], among others. Within each
of these topics, there are crucial associated socio-economic and environmental impacts.

In the theoretical framework, a number of the first successful attempts in tropical
meteorology originated from the modeling of waves on the equatorial β-plane, beginning
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with the works of Matsuno and others in the 1960s [10–12]. The waves arising in this
type of system, whether shallow water or primitive equations [13,14], on the equatorial
β-plane, all have mid-latitude counterparts such as the Rossby and inertio-gravity waves;
in addition, other modes arise that are unique to the equatorial region, such as Kelvin
and mixed Rossby-Gravity modes. The latter modes have recently been shown to have
deep theoretical roots due to topological invariants, behaving as interfacial waves between
different media [15].

An important step towards connecting equatorial wave theory and observations was
initially achieved in Takayabu [16], Pires et al. [17] and Wheeler and Kiladis [18]. These
studies obtained the wavenumber vs. time-frequency spectrum of tropical oscillations from
either the dynamical field variables or the outgoing long-wave radiation (OLR), revealing
a striking correspondence between the observed time frequencies and the theoretical
predictions of linear equatorial wave theory. These and subsequent studies, e.g., [19],
have been regarded as observational evidence for the existence of convectively coupled
equatorial waves. In the simplest theories, convectively coupled waves are oscillations
that resemble the free linear modes, except with slower frequencies due to the coupling
of the waves with moist convection; these theories are reviewed in Kiladis et al. [4]. In
addition to the observed oscillations, which exhibit good correspondence with the linear
(free or convectively coupled) equatorial waves, Kiladis et al. [4] provided insight into the
structure of the Madden–Julian Oscillation, which does not correspond to any of the linear
equatorial wave modes [2]. An alternative approach to detecting equatorial wave signals
from observed atmospheric data fields was proposed by Yang et al. [20]. This approach
obtains the observed wavenumber-frequency spectrum of the equatorial wave modes by
projecting the meridional structure of a single-level atmospheric field (after the Fourier
decomposition of its x-t dependence) onto the parabolic cylinder functions associated with
each y-structure of the equatorial wave types, with the equatorial Rossby deformation
radius of the wave mode being inferred from the meridional structure of the observed field.
This approach has been applied to both observational data [21] and outputs of atmospheric
general circulation models [22]. A similar method consists of projecting the observed OLR
field onto empirical orthogonal functions (EOFs) [23–25]. The correspondence between
the time-frequency spectrum of observed OLR or velocity field oscillations and the linear
eigenfrequency of equatorial waves suggests that it is possible to isolate the field variables
associated with a single wave type by filtering the corresponding band in the wavenumber-
frequency spectrum. This type of decomposition has been carried out in a number of
studies e.g., [19]. In this context, departures from the linear wave eigenfrequencies may
have several origins, such as a non-resting basic state [20,26], more complex mechanisms
of moisture coupling [27,28], nonlinear effects [1], or coupling with oceanic processes [29].
A comparison among the different methods of identifying equatorial wave signals from
observed field data can be found in Knippertz et al. [30].

A more mathematically rigorous approach to decomposing a given set of velocity and
pressure fields into their corresponding eigenmodes is to project them onto the orthogonal
basis set provided by the equatorial wave eigenfunctions. This procedure was carried
out, for instance, in Gehne and Kleeman [31] using the equatorial β-plane shallow water
equations. Despite the simplicity of the model equations, the authors showed several
important results, such as the role of long barotropic Rossby waves in generating spectral
peaks on synoptic scales. A normal mode decomposition approach combined with space-
time spectral analysis was put forward by Castanheira and Marques [32], who studied the
coherence between the OLR signal and the normal-mode decomposed fields.

In the present study, we use a similar procedure to those documented in Gehne and
Kleeman [31] and Castanheira and Marques [32], in which the contribution of each mode
type to the field variables is obtained by the projection onto the corresponding mode
eigenvector rather than the spectral peak bands in the wavenumber-frequency domain. In
this context, as in Castanheira and Marques [32], the basis function set associated with the
modal decomposition is provided by the eigensolutions of the spherical geometry primitive
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equations linearized around a resting background state. In this way, the corresponding
normal mode functions (NMF) consist of the eigenfunctions of a rigid lid boundary con-
dition Sturm–Liouville problem as vertical structure functions and the eigenfunctions of
Laplace’s tidal equations, the so-called Hough vector harmonics [33–35], as the horizontal
structure functions. We use ERA-Interim reanalysis data from the European Centre for
Medium-Range Weather Forecasts [36] to decompose the velocity and geopotential height
fields onto the NMF basis. The projection procedure was first proposed by Kasahara and
Puri [37]; here, we use a particular implementation of this procedure provided by the open
source MODES software described in Žagar et al. [38]. This procedure has been successful
in describing different atmospheric phenomena, such as the MJO [39] and the QBO [6,40].

Therefore, our approach to interpreting the observed data utilizes the eigensolutions
of a simplified and incomplete model, namely, the dry linear primitive equation model.
However, because the eigensolutions of this simplified model constitute an orthogonal
and complete set, the solution of a more complex model (and, supposedly, the observed
atmospheric fields) can be expanded in terms of these basis functions; this expansion may
be truncated with an arbitrary accuracy at each time. In this context, unlike the linear and
homogeneous terms of the governing equations, the non-homogeneous terms associated
with nonlinearity, a non-resting background state, and parametric forcings due to the
unresolved physics do not hold a diagonalized representation in terms of the basis set,
and as such are responsible for coupling between different wave modes. Consequently,
the normal mode decomposition provides a data interpretation perspective in which the
aforementioned non-homogeneous terms of a more complex model can be thought of as
mechanisms responsible for the breakdown of the normal modes’ independence, which
in turn can lead to: (i) the excitation and/or instability of the normal modes, (ii) the
modification of their propagation frequencies, and (iii) energy exchanges among different
wave modes.

Following normal mode decomposition of the horizontal velocity and geopoten-
tial height fields, we obtain the wavenumber-frequency spectrum of the reconstructed
200 hPa zonal velocity field associated with each mode type, namely, Rossby (R), Kelvin (K),
mixed Rossby-gravity (MRG), and eastward/westward propagating inertio-gravity modes
(EIG/WIG), using the methodology proposed by Wheeler and Kiladis [18]. In addition, the
wavenumber-frequency spectra mentioned above are computed for the barotropic and baro-
clinic components of the reconstructed wind fields, with these components being defined
according to the vertical structure of the eigenmodes within the troposphere, as shown
later. The results reveal a number of surprising departures from those expected based on
linear wave theory. For instance, certain waves propagate in the opposite direction to what
would be expected based on linear theory (e.g., WIG waves propagating eastward), and
there are significant departures from the linear eigenfrequencies. We speculate that these
discrepancies can be attributed to the interplay among the different coupling mechanisms
involving distinct wave types, such as wave interactions through either the background
state or nonlinearity, as well as coupling between waves and moist convection.

2. Normal Mode Function and Equatorial Wave Theory
2.1. Normal Mode Function

As previously mentioned, the basis functions utilized here for the projection of the
three-dimensional global field dataset are the normal modes of the compressible primitive
equations in the spherical coordinate frame linearized around a resting background state.
Following the formulation of Kasahara and Puri [37], these equations can be written using
the so-called σ-coordinate system as follows:
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∂u
∂t
− 2Ω sin(φ)v = − 1

a cos(φ)
∂P
∂λ

, (1)

∂v
∂t

+ 2Ω sin(φ)u = −1
a

∂P
∂φ

, (2)

∂

∂t

[
∂

∂σ

(
σ

RΓ0

∂P
∂σ

)]
−∇ ·V = 0, (3)

In the equations above, V = (u, v) refers to the horizontal wind field, with u and
v indicating its zonal and meridional components, respectively; σ = p/ps is the vertical
coordinate, where p and ps are the pressure and surface pressure fields, respectively; (λ, φ)
refers to the regular longitude–latitude coordinate system; Ω is the Earth’s rotation rate;
R is the dry air gas constant; a is the average radius of the Earth; Γ0 is the static stability
parameter of the stably stratified background atmosphere; and

P = gz + RT0(σ) ln ps

, with T0 corresponding to the background temperature, z the geopotential height, and g
the gravitational acceleration. Assuming the rigid lid boundary conditions dσ

dt = 0 at σ = 0
and σ = 1, Kasahara and Puri [37] showed that the eigensolutions of system (1)–(3) above
can be expressed as follows:u(λ, φ, σ, t)

v(λ, φ, σ, t)
P(λ, φ, σ, t)

 = X(α)
m,k,n(φ) exp[ikλ− iω(α)

m,k,nt]Gm(σ) (4)

In (4), k is the zonal wavenumber, m and n are the indices that characterize the vertical
and meridional structures of the eigenmodes, respectively, and the index α distinguishes
the wave type, as is discussed later. In this context, the vertical structure functions Gm(σ)
satisfy the following Sturm–Liouville problem:

d
dσ

(
σg

RΓ0

dGm

dσ

)
+

1
Hm

Gm = 0 (5)

dGm

dσ
= 0 at σ = 0 (6)

dGm

dσ
+

Γ0

T0
Gm = 0 at σ = 1 (7)

where the separation constant Hm is labeled as the equivalent height [41] and is determined
from the eigenvalues of the boundary value problem above. To find these eigenvalues and
their corresponding eigenfunctions, we use the numerical procedure proposed in Kasahara
and Puri [37], which consists of solving the matrix eigenvalue problem obtained from the
finite difference representation of Equations (5)–(7). The solutions corresponding to the
first twenty eigenmodes are displayed in Figure 1. It can be noted that the first five modes
exhibit a barotropic structure in the troposphere, that is, their eigenfunctions do not change
sign throughout this layer. In addition, the vertical modes 6 ≤ m ≤ 10, 11 ≤ m ≤ 15 and
16 ≤ m ≤ 20 exhibit one, two, and three complete oscillations within the troposphere, re-
spectively. Therefore, the mode classes m ≤ 5, 6 ≤ m ≤ 10, 11 ≤ m ≤ 15, and 16 ≤ m ≤ 20
can be thought of as analogous to the barotropic mode and the first, second, and third
baroclinic modes, respectively, of a simpler version of (5)–(7) characterized by a constant
static stability parameter and the upper lid located at the tropopause (see, for instance, [42]).
Another point to be noted is that although modes 6 ≤ m ≤ 20 exhibit only a few oscillations
in the troposphere, they are highly oscillatory in the stratosphere. This can be attributed to
the stronger static stability of the stratosphere in comparison with the troposphere. As
in Žagar et al. [38], we have computed these modes for the basic state temperature profile
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T0 provided by the global mean temperature field referred to the year 2000; however, this
profile is not significantly different from the corresponding multi-year average field. In
addition, the vertical eigenmodes displayed in Figure 1 are only slightly different from
the ones obtained from typical tropical and extratropical temperature profiles (figures not
shown). More specifically, as the troposphere is deeper in the tropics than extra-tropically,
our classification of the vertical modes for the barotropic and baroclinic modes could be
slightly changed by considering a typical tropical or extra-tropical temperature profile.
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Figure 1. Vertical structure functions corresponding to the first twenty vertical modes of the normal
mode decomposition.

On the other hand, the meridional structure vector functions

X(α)
m,k,n = [u(α)

m,k,n(φ),−iv(α)m,k,n(φ), gh(α)m,k,n(φ)]
T

, known as the Hough vector harmonics [34,35,43], along with the eigenfrequencies ω
(α)
m,k,n

satisfy the following eigenvalue problem:

−ω
(α)
m,k,nu(α)

m,k,n − 2Ω sin(φ)v(α)m,k,n +
gkh(α)m,k,n

a cos φ
= 0, (8)

ω
(α)
m,k,nv(α)m,k,n + 2Ω sin(φ)u(α)

m,k,n +
g
a

dh(α)m,k,n

dφ
= 0, (9)

ω
(α)
m,k,nh(α)m,k,n +

Hm

a cos φ

ku(α)
m,k,n +

d(v(α)m,k,n cos φ)

dφ

 = 0, (10)

with the assumption that h(α)m,k,n = 0 at the poles. The eigenvalue problem presented above,
known as Laplace’s tidal equations, can only be solved numerically, unless asymptotic
approximations are made as in Longuet-Higgins [33]. In the open-source MODES software
utilized here, the eigenfrequencies and the corresponding Hough vector eigenfunctions
X(α)

m,k,n are obtained from the numerical procedure described in Kasahara [34] and Swarz-
trauber and Kasahara [44]. According to Kasahara [34], the eigensolutions of (8)–(10)
can be divided into the symmetric and antisymmetric eigenmodes. For the symmetric
modes, u(α)

m,k,n and h(α)m,k,n exhibit an even symmetry about the equator and v(α)m,k,n exhibits an

odd symmetry, whereas the antisymmetric modes are characterized by u(α)
m,k,n and h(α)m,k,n

exhibiting an odd symmetry and v(α)m,k,n exhibiting an even one. As shown later, the sym-
metric (antisymmetric) modes are labeled by an odd (even) meridional quantum index
n. Longuet-Higgins [33] classified the mode types of (8)–(10) as the first-kind oscillations,
which correspond to the high-frequency westward/eastward propagating inertio-gravity
waves, and the second-kind oscillations or rotational modes, which represent the so-called
Rossby–Haurwitz waves. The Kelvin wave corresponds to the first eastward propagating
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symmetric mode of the first-kind oscillations, while the mixed Rossby-gravity waves refer
to the first antisymmetric rotational mode [34].

2.2. Equatorial Wave Theory

Although we have utilized the normal mode functions on the sphere for the eigenmode
decomposition of the observed large-scale atmospheric fields, as the Hough vector functions
can only be obtained numerically, it is useful to make an analogy with the equatorial wave
theory in order to show approximate analytical expressions for the meridional structure
functions X(α)

m,k,n. In fact, for small values of the equivalent height Hm, the Hough vector
functions can be approximated by the eigensolutions of the equatorial β-plane version
of (8)–(10) [14]. These eigensolutions of the equatorial β-plane shallow-water equations
can be expressed in terms of the orthogonal basis of parabolic cylinder functions [10,13,14].
The meridional structure of the non-dispersive Kelvin wave is written as follows:

X(K)
m,k,n =

cm
0

c2
m

e−ξ2
m/2. (11)

where cm =
√

gHm,

ξm =
y(

cm
β

) 1
2

, with y representing the meridional displacement from the equator and β = 2Ω/a the
equatorial value of the Rossby parameter. The equatorial Kelvin wave dispersion relation is
provided by ω

(K)
m,k,n = k

√
gHm. The e-folding length

√
cm
β appearing in the equation above

refers to the equatorial Rossby deformation radius, which is a measure of the equatorial
trapping of the eigenmode; the smaller the value of this parameter, the more equatorially
trapped the eigenmode is. Figure 2 displays the equatorial Rossby deformation radius as
a function of the vertical mode index m. It can be noted from Figure 2 that the equatorial
Rossby deformation radius is maximum for the vertical mode m = 1 and sharply decreases
with the vertical mode index m. This implies that the equatorially trapped eigenmodes,
for which the meridional structure functions can be closely approximated by the parabolic
cylinder functions described here, refer to the vertical modes having a baroclinic structure
in the troposphere (m > 5). On the other hand, the modes having a barotropic structure
in the troposphere (m < 5) are no longer trapped near the equator, exhibiting a large
projection in middle and high latitudes, as is discussed later.

Figure 2. Equatorial Rossby deformation radius
√

cm/β (in Km) as a function of the vertical mode
index m.



Atmosphere 2023, 14, 622 7 of 33

The mixed Rossby-gravity (MRG) wave and the first anti-symmetric eastward propa-
gating inertio-gravity wave (EIG) have meridional structure functions of the following form:

X(α)
m,k,0 =



cmξme−ξ2
m/2

ω
(α)
m,k,0√
cm β

+k
√

cm
β

cme−ξ2
m/2

c2
mξme−ξ2

m/2

ω
(α)
m,k,0√
cm β

+k
√

cm
β


, (12)

with the eigenfrequencies ω
(α)
m,k,0 satisfying

ω
(α)
m,k,0 = kcm

[
1
2
± 1

2

(
1 +

4β

k2cm

) 1
2
]

(13)

where the negative (positive) sign in (13) refers to α = MRG (α = EIG).
For the other EIG waves, as well as for the Rossby (R) and westward propagating

inertio-gravity (WIG) waves, the meridional structure functions are provided by

c−1
m u(α)

m,k,n =
1
2

ω
(α)
m,k,n√
cmβ
− k
√

cm

β

Dn+1(ξm) + n

ω
(α)
m,k,n√
cmβ

+ k
√

cm

β

Dn−1(ξm) (14)

c−1
m v(α)m,k,n =

 (ω
(α)
m,k,n)

2

cmβ
− k2 cm

β

Dn(ξm) (15)

c−2
m gh(α)m,k,n =

1
2

ω
(α)
m,k,n√
cmβ
− k
√

cm

β

Dn+1(ξm)− n

ω
(α)
m,k,n√
cmβ

+ k
√

cm

β

Dn−1(ξm) (16)

where Dn(ξ) = Hn(ξ)e−ξ2/2 is the Hermite function, with Hn(ξ) representing the n-th
degree Hermite polynomial and the eigenfrequencies ω

(α)
m,k,n satisfying the dispersion

relation
(ω

(α)
m,k,n)

2

gHm
− k2 − kβ

ω
(α)
m,k,n

= (2n + 1)
β√
gHm

.

Above, Hn(ξ) is defined such that
∫ ∞
−∞ Hm(y)Hn(y)e−y2

dy = δm,n
√

π2nn.

3. Data and Methods

Here, in order to perform the normal mode decomposition, as well as to compute
the space-time power spectra and the spatial coherence, we have used Era-Interim (ERAI)
reanalysis data from the European Centre for Medium-Range Weather Forecasts [36]. The
dataset consists of horizontal velocity, temperature, specific humidity, surface pressure,
geopotential height, and orography fields; its horizontal resolution is 2.5◦ × 2.5◦, with
60 vertical levels from surface level up to 0.1 hPa.

3.1. Normal Mode Decomposition

From the orthogonality and completeness of the normal mode functions described in
Section 2.1, the observed atmospheric fields can be expanded in a normal mode function
series as follows:
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u(λ, φ, σ, t)
v(λ, φ, σ, t)
P(λ, φ, σ, t)

 =
+∞

∑
m=1

+∞

∑
k=−∞

+∞

∑
n=1

∑
α

A(α)
m,k,n(t)X

(α)
m,k,n(φ)e

ikλGm(σ). (17)

In this way, given the observations of the horizontal wind, pressure and geopotential
height fields, the spectral coefficients A(α)

m,k,n(t) are obtained by the projection of the ob-
served fields onto a particular eigenmode characterized by a vertical mode index m, zonal
wavenumber k, meridional quantum index n, and a mode type labeled by α, according to
Equation (18). The parameter α indicates whether the mode is an eastward inertia-gravity
wave (EIG), a westward inertia-gravity wave (WIG), or a rotational mode (ROT). Thus,
the meridional truncation considers N EIG, N WIG, and N ROT modes. The EIG and
ROT modes with the lowest meridional index n are defined as the Kelvin wave and mixed
Rossby-gravity wave modes, respectively [38].

A(α)
m,k,n(t) =

∫ 1

0

∫ 2π

0

∫ π/2

−π/2

[
u(λ, φ, σ, t)u(α)

m,k,n(φ) + v(λ, φ, σ, t)v(α)m,k,n(φ)+ (18)

P(λ, φ, σ, t)gh(α)m,k,n(φ)
]
e−ikλGm(σ)a2 cos(φ)dφdλdσ

The decomposition illustrated above is performed using the open source MODES
software [38] with a truncation of K = 32, N = 20, and M = 43. Details on the numerical
procedures are provided in Žagar et al. [38] and Kasahara and Puri [37]. The coefficients
A(α)

m,k,n(t) obtained from (18) can be used to compute filtered reconstructions of the atmo-
spheric fields, for instance, the reconstruction of the dynamical fields associated with a
single mode type:u(α)(λ, φ, σ, t)

v(α)(λ, φ, σ, t)
P(α)(λ, φ, σ, t)

 = lim
M→+∞

lim
K→+∞

lim
N→+∞

+M

∑
m=1

+K

∑
k=−K

+N

∑
n=1

A(α)
m,k,n(t)X

(α)
m,k,n(φ)e

ikλGm(σ) (19)

3.2. Wavenumber-Frequency Power Spectrum Analysis

The wavenumber-frequency spectrum of tropical disturbances was initially docu-
mented in Takayabu [16,45] and then extended in Wheeler and Kiladis [18], with both of
these studies analysing the OLR signals. The approach consists of performing the Fourier
transform regarding both the zonal and time dependencies of the corresponding field vari-
able averaged within the equatorial belt from 15◦ S to 15◦ N. Because the raw spectrum ob-
tained by this procedure exhibits a red-noise nature, Wheeler and Kiladis [18] proposed its
division by a background spectrum in order to allow clearer distinction of local maxima in
the k−ω space associated with propagating wave disturbances. This background spectrum
was defined by Wheeler and Kiladis [18] as a smoothed version of the raw spectrum ob-
tained by applying a 1-2-1 filter. In this work, we use a 96-day time window with 65 overlap-
ping days between consecutive windows. We adopt the methodology proposed by Wheeler
and Kiladis [18] and implement it using the NCAR command language, available at
https://www.ncl.ucar.edu/Document/Functions/Diagnostics/wkSpaceTime.shtml, ac-
cessed on 23 January 2023 [46].

However, because the normal mode decomposition comprises only velocity and
geopotential height fields, we chose the zonal component of the velocity field (u) at the
200 hPa level to obtain the wavenumber-frequency spectra. As can be noted in Figure 1,
this pressure level refers to the maximum of the vertical structure functions associated with
vertical modes m = 8 and 9, which refer to the peak projection of the tropical atmospheric
circulation response to deep convection heat forcing, e.g., [47,48]. Thus, at this level
one can detect the signal of both the large-scale tropical disturbances and the tropical–
extratropical teleconnections associated with barotropic Rossby waves. The large-scale

https://www.ncl.ucar.edu/Document/Functions/Diagnostics/wkSpaceTime.shtml
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features occurring at this pressure level may additionally be important for modulating
atmospheric parameters that are relevant to astronomical observations. In fact, Shikhovtsev
et al. [49] and Shikhovtsev et al. [50] have shown that large-scale circulation features such
as those associated with baroclinic instability significantly contribute to turbulence energy
spectra computed from high-altitude atmospheric flow observations.

3.3. Spatial Coherence

In order to quantify the degree of coupling between the dynamical fields associated
with different wave types, we adopt the concept of classical coherence to take into account
spatial variability. Different versions associated with coherence have been used to quantify
the coupling between normal modes [6,51]. In the present work, in particular, we apply this
quantity for the zonal velocity field associated with two wave types, u1 and u2. The idea is
to calculate both the autocorrelation and cross-correlation functions based on the spatial
correlation of the fields at each grid point. We define the cross-correlation function as

Ru1,u2(τ) =
1

2πT

∫ T

0

∫ 2π

0
u1(θ, t)u2(θ, t− τ)dθdt, (20)

where τ is a time lag given in days. Analogously, the auto-correlation function is defined as

Ruj ,uj(τ) =
1

2πT

∫ T

0

∫ 2π

0
uj(θ, t)uj(θ, t− τ)dθdt, (21)

where j = 1, 2. Then, the spatial coherence is defined as the Fourier transform of the cross-
correlation function normalized by the product of the two auto-correlation functions, viz.

C (σ) =
|F [Ru1,u2(τ)]|

2

F [Ru2,u2(τ)]F [Ru1,u1(τ)]
, (22)

with the Fourier transform being defined as follows:

F [ f (τ)](σ) =
∫ ∞

−∞
f (τ)e−2iπστdτ. (23)

Here, we use the parameter T = 60 days. The coherence statistics were computed
separately for different seasons (December-January-February and June-July-August) within
one year, while the mean and standard deviations were computed for different years.

4. Results

For illustrative purposes, Figure 3 shows the 200 hPa horizontal wind and geopotential
fields for 1 January 2001 at 12UTC. Figure 3a displays the original fields, while the remaining
panels illustrate their filtered versions for specific wave types according to Equation (19).
The flow pattern displayed in Figure 3a is clearly dominated by the subtropical jet streams
with embedded planetary-scale waves. As this flow pattern has a rotational character and
relatively small divergence, it is essentially caused by the contribution of the rotational
modes, as clearly demonstrated by comparing Figure 3a,b. Figure 3c is the same as
Figure 3b except with the exclusion of those vertical modes with a barotropic structure in
the troposphere (i.e., m = 1, 2, 3, 4, 5). The flow pattern illustrated in Figure 3c is dominated
by the subtropical jets, with equally important contributions in certain regions of the
tropics, most notably in the Pacific sector. Figure 3d,e presents the respective contributions
of eastward and westward inertio-gravity waves to the horizontal wind and geopotential
fields displayed in Panel (a). As a consequence of the dominance of the rotational modes
with respect to the flow pattern illustrated in Figure 3a, the dynamical fields due to the
activity of the inertio-gravity modes are of much weaker magnitude, as can be observed
in Figure 3d,e. The divergent character of the flow associated with the high-frequency
waves is clear from Figure 3d,e. The Kelvin wave contribution is presented in Figure 3f. As
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expected, the Kelvin component is characterized by a symmetric about the equator zonal
flow in phase with the geopotential field, with both exhibiting strong trapping near the
equator. The mixed Rossby-gravity mode contribution displayed in Figure 3g is strongly
confined near the equator, exhibiting a strong symmetric about the equator meridional flow
and an antisymmetric about the equator geopotential field.
(a) (b)

(c) (d)

(e) (f )

(g)

Figure 3. Snapshot of the horizontal velocity and geopotential fields at 200 hPa (a) and their decom-
position on the normal mode function basis for rotational modes (b), the baroclinic component of the
rotational modes (c), eastward inertio gravity (EIG) modes (d), westward inertio-gravity modes (e),
Kelvin wave mode, (f) and mixed Rossby-Gravity mode (g).

4.1. The Wavenumber-Frequency Spectra

Figure 4 shows the wavenumber-frequency spectra for the 200 hPa zonal wind field.
Figure 4a–c displays the symmetric part of the spectrum, while Figure 4d–f presents the
antisymmetric part. The respective raw power spectra of each diagram are shown in
Figure S1 of the supplementary material [18]. The wavenumber-frequency spectrum has
been computed from the raw data set in panels (a) and (d), while the remaining panels
show wavenumber-frequency spectra computed from the reconstruction of the zonal wind
field by considering only the barotropic (panels b and e) and baroclinic (panels c and f)
components. The barotropic component refers to the vertical modes m = 1, 2, 3, 4, and
5, which exhibit a barotropic structure throughout the troposphere, while the baroclinic



Atmosphere 2023, 14, 622 11 of 33

component refers to the remaining vertical modes (m > 5). Figure 4a,d are similar to
the wavenumber-frequency spectra of tropical disturbances documented in the literature,
e.g., [4,16,18,45], and are presented here for comparison purposes. In Figure 4a, a significant
spectral peak band is apparent following the linear dispersion relation of the Kelvin waves
between wave-numbers 2 and 10. Another significant spectral peak observed in Figure 4a
refers to westward-propagating planetary-scale disturbances with wavenumbers 1–5, a
spectral domain that corresponds to the barotropic Rossby–Haurwitz waves, e.g., [31].
The strongest power signal of the symmetric part of the observed 200 hPa zonal wind
field spectrum occurs at wave-number 1 with an intraseasonal timescale, which might be
associated with the Madden–Julian Oscillation (MJO). There is a noticeable and significant
spectral peak associated with large-scale (k = 3− 7) westward inertio-gravity waves, along
with several significant signals above the dispersion curves associated with equatorial
Rossby waves. The antisymmetric part of the spectrum (Figure 4d) shows a strong signal
along the dispersion relation of the eastward propagating inertio-gravity modes with zonal
wavenumbers 3–10. Here, the first antisymmetric eastward propagating inertio-gravity
mode can be thought of as the eastward branch of the continuum spectrum of the mixed
Rossby-gravity mode; see [52,53] for further discussion.

(a) (b) (c)

(d) (e) (f )

H=12m

Figure 4. Frequency-wavenumber spectrum of the zonal wind field at 200 hPa, for the symmetric
(panels (a–c)) and antisymmetric (panels (d–f)) parts of the spectrum; panels (a,d) refer to the full
spectrum of vertical modes, whereas panels (b,e) show the barotropic component and panels (c,f) the
baroclinic component of the corresponding spectra.

The most remarkable difference between the wavenumber-frequency spectra presented
in Figure 4a,d and those wavenumber-frequency spectra of outgoing long-wave radiation
(OLR) presented in the literature is in the peak at planetary scales (wavenumber 1–2)
having an intraseasonal timescale associated with the MJO. While here this spectral peak is
strongly concentrated at planetary scales, the corresponding intraseasonal peak associated
with the OLR spectrum presented by [4] is more elongated along the zonal wavenumber
domain, showing a dispersion relation dω(k)/dk ≈ 0. This difference might be attributed
to the circulation associated with moist convection containing less kinetic energy than the
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large-scale circulation dominated by Rossby and Kelvin waves. In addition, as the OLR
field is a proxy for convection activity, its spectrum should contain the multiple scales
associated with convection organization; for instance, see [1,27,54].

The wavenumber-frequency spectrum of the barotropic (m = 1− 5) component of
the 200 hPa zonal wind field shows that the peak associated with westward propagating
disturbances with wavenumbers 1 ≤ k ≤ 5 and a period of T ∼ 5 days observed in
Figure 4a is indeed associated with barotropic waves. This spectral peak might result
from the energy injection associated with baroclinic instability, as discussed in the next
subsection. On the other hand, the baroclinic component of the symmetric part of the
200 hPa zonal wind spectrum (Figure 4c) is largely dominated by a signal that follows
the Kelvin wave dispersion relation, with a particularly strong spectral peak at k = 1
and a period of T ∼ 30 days that may be attributed with the Madden–Julian Oscillation.
Regarding the antisymmetric component of the 200 hPa zonal wind space-time spectrum,
it is notable that its baroclinic component (Figure 4f) is very similar to the corresponding
full spectrum (Figure 4d), and is dominated by a spectral peak following the dispersion
relation of the eastward propagating inertio-gravity mode. The barotropic component,
on the other hand, shows spectral peaks in different regions of the spectrum, including
a narrow peak related to k = 1 westward propagating disturbances for the intraseasonal
timescale; this may be associated with the MJO. Spectral peaks with characteristic periods
of T = 5–10 days and zonal wavenumbers k = 1–5 exhibiting westward propagation, along
with a spectral peak with a period of T = 3–5 days and wavenumber k = 6–9 exhibiting
eastward propagation, are observed as well. There is a noticeable strong peak of the
barotropic component at k = 0 for the intraseasonal timescale. This intraseasonal timescale
barotropic k = 0 signal refers to the super-rotation characteristic of the MJO. In fact, in
the context of the MJO multiscale model proposed by Biello and Majda [55], Biello et al.
[56] demonstrated that the planetary-scale circulation associated with the MJO exhibits a
vertical and zonal mean meridional flux convergence that drives equatorial westerly flows.

In order to help with interpretation of the results presented in Figure 4, in Figure 5 we
present the energy spectrum as a function of the zonal wavenumber k and the vertical mode
index m. From Figure 5, it can be noted that the spectrum is dominated by disturbances with
large spatial scales (k = 1–5) and a barotropic structure in the troposphere (m = 1–5). This
spectral dominance of planetary-scale disturbances with a barotropic structure, observed
in Figure 5, is consistent with the strong spectral peaks of the barotropic component of the
flow displayed in Figure 4b, which is associated with westward propagating barotropic
Rossby waves and the superrotation characteristic of the MJO. In addition, the secondary
peak observed in Figure 5 over the baroclinic mode m = 10, with a somewhat broad
signal over zonal wavenumbers 1-10, may be due to the strong spectral peak of the baro-
clinic component of both the MJO and the convectively coupled Kelvin modes verified in
Figure 4c.

4.2. Rossby Modes

Figure 6 shows the wavenumber-frequency spectra computed from the normal mode
decomposition of the 200 hPa zonal wind field that retains only the rotational modes, with
all the vertical modes (Figure 6a,d), and with only the barotropic (Figure 6b,e) and baro-
clinic (Figure 6c,f) components. Figure 6a–c displays the symmetric part of the spectrum,
while Figure 6d–f presents the antisymmetric part. The respective raw power spectra
of each diagram are shown in Figure S2 of the supplementary material [18]. For the
symmetric part of the full vertical mode spectrum, it can be seen in Figure 6a that there
is an energy concentration on wave-number 1, with eastward propagation associated
with the global-scale circulation pattern related to the Madden–Julian Oscillation (see, for
instance, the MJO skeleton theory composed of global-scale Rossby and Kelvin waves pre-
sented in Majda and Stechmann [54]). A significant spectral peak is found on the synoptic
timescale (3–6 day period) with westward propagation, which was proposed by Gehne
and Kleeman [31] as being due to the barotropic Rossby–Haurwitz wave activity. This
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spectral peak on the synoptic scale with westward propagation is more pronounced and
more closely related to the barotropic Rossby wave dispersion relation in the symmetric
space-time spectrum evaluated from the barotropic component of the zonal wind field
presented in Figure 6b, thereby confirming the Gehne and Kleeman’s claim.

Figure 5. Energy spectrum of the atmospheric oscillations as a function of the zonal wavenumber
and the vertical mode index.

This spectral peak band on zonal wavenumbers 1–5 of the barotropic component
of the 200 hPa zonal wind field, following the dispersion relation of barotropic Rossby–
Haurwitz waves, is believed to be associated with the energy injection due to baroclinic
instability. In fact, Tung and Orlando [57] used a two-layer quasi-geostrophic model to
simulate the stationary energy spectrum that results from energy injection associated
with baroclinic instability. They showed that the obtained stationary energy spectrum
exhibits a peak on the largest synoptic-scale waves, as well as an approximate k−3 power
low for the whole synoptic-scale range. The shape of the obtained energy spectrum was
attributed to: (i) the selective potential energy injection from the mean flow, (ii) the role
of the nonlinear wave–wave interactions having both upscale and downscale transfers,
and (iii) the action of Ekman damping on planetary-scale waves. In addition, Ambacher
and Waite [58] performed a similar analysis using a Galerkin expansion with the normal
modes of the f-plane primitive equations; these normal modes are similar to the ones
described in Section 2.1. The main difference is that Ambacher and Waite [58] considered
the midlatitude f-plane geometry, for which only the vortical (geostrophic) mode and a pair
of eastward/westward inertio-gravity waves are allowed. They showed that the stationary
energy spectrum generated by the baroclinic energy injection is dominated by the barotropic
mode, exhibiting an approximate power low of m−3 as a function of the vertical mode
index m. A similar result was obtained by Kasahara and Tanaka [59], who solved the initial
value problem in reference to the linearized equations around a baroclinically unstable
background state for a global spherical geometry model using a Galerkin expansion in
terms of the same normal modes described in Section 2.1. They showed that the energetics
of the most unstable modes is dominated by the rotational wave modes characterized by
the barotropic vertical mode m = 1 and the lowest meridional quantum numbers n = 1–4.
In addition, Kasahara [60] solved the forced-dissipative version of Kasahara and Tanaka’s
equations and showed that the baroclinic instability enhances the mid-latitude circulation
response to tropical deep convection heating. This mid-latitude circulation response to deep
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convection heating is in turn associated with barotropic Rossby–Haurwitz waves, since the
eigenmodes having a barotropic structure in the troposphere are no longer trapped near
the equator, as illustrated in Figure 2. According to Kasahara [60], these barotropic Rossby
modes are excited by the interaction between the vertical shear of the background state and
the tropical circulation response to deep convection heating, which exhibits a baroclinic
structure in the troposphere. In addition, these barotropic Rossby modes can excite the
equatorially trapped waves through either the vertical shear of the background flow or
through nonlinear wave–wave interaction [1,42,61], as we discuss later.

An important point to be mentioned in relation to the above discussion is the use of the
normal mode functions described in Section 2.1 to solve the perturbation equations around
a background state having both meridional and vertical shear. In fact, as discussed in
Section 1, although these normal mode functions are the eigensolutions of the perturbation
equations linearized around a resting background state, the skew-Hermitian nature of the
linear operator associated with these equations implies that their eigenmodes constitute an
orthogonal and complete set; for instance, see [34,44]. Consequently, any square integrable
vector function may be represented as a series of these eigenfunctions. This allows expres-
sion of the solution of a more complex model (presumably including the observed data
fields analyzed here) that includes nonlinearity, more complex background states, and the
parameterizations of unresolved physical processes such as cumulus convection in terms of
a Galerkin expansion, as in Equation (17). Kasahara and Tanaka [59] compared their results
with other studies on baroclinic instability, e.g., [62,63], and found that the baroclinically
unstable modes can be represented with reasonable accuracy using the aforementioned
normal mode expansion.

From the symmetric baroclinic component displayed in Figure 6c, we can observe that
this spectral peak band over zonal wavenumbers 1–5 following the dispersion relation of
barotropic Rossby waves is significantly reduced by removing the vertical modes with a
barotropic structure in the troposphere, thereby confirming the above discussion of whether
this signal might be attributed to the barotropic Rossby waves excited by baroclinic instabil-
ity. On the other hand, the intense spectral peak at k = 1 associated with the MJO remains
after removing the vertical modes with a barotropic structure in the troposphere. This is in
agreement with the global-scale circulation associated with the MJO being characterized by
the tropospheric baroclinic structure associated with the tropical circulation response to
deep convection heating [64]. The antisymmetric part of the spectrum (Figure 6d) shows
a signal roughly following the dispersion relation of the MRG mode, which is evident in
the baroclinic part of this spectrum as well (Figure 6f). The wavenumber-vertical mode
spectrum of the rotational modes is presented in Figure 7, and is very similar in structure
to the spectrum without any modal filtering presented in Figure 5; here, the energy is
concentrated in low zonal wavenumbers and low vertical indices. In addition, it is possible
to note a secondary peak with a baroclinic structure in the troposphere, associated with
the vertical modes m = 7–10. The slower energy decay with zonal wavenumber for the
barotropic mode m = 1 in comparison with the other vertical modes is consistent with
the baroclinic instability signal discussed above. In fact, Kurgansky [65] showed that the
stationary energy spectrum of a barotropic nondivergent model is described by a k−2 power
law when constrained by a baroclinic instability forcing and dissipation. The differences
between the observed spectrum displayed in Figure 7 and the predicted power low of
the barotropic energy spectrum obtained by Kurgansky [65] can be attributed to the up-
scale energy transfers occurring within the tropics, in particular the upscale energy fluxes
associated with the MJO dynamics, e.g., [55].
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(a) (b) (c)

(d) (e) (f )

Figure 6. Wavenumber-frequency spectrum of the 200 hPa zonal wind field associated with the rota-
tional modes. Panels (a–c) refer to the symmetric part, while panels (d–f) refer to the antisymmetric
part. The full spectrum of vertical modes is presented in panels (a,d), the barotropic component of
the corresponding parts is displayed in panels (b,e), and the baroclinic component is illustrated in
panels (c,f).
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Figure 7. Energy spectrum of the rotational mode component of the atmospheric oscillations as a
function of the zonal wavenumber and vertical mode.

4.3. Westward Inertio-Gravity (WIG) Modes

Figure 8 shows the wavenumber-frequency spectrum computed from the normal
mode decomposition of the 200 hPa zonal wind field that retains only the westward



Atmosphere 2023, 14, 622 16 of 33

inertio-gravity (WIG) modes, including all the vertical modes (Figure 8a,d) and only the
barotropic (Figure 8b,e) and baroclinic (Figure 8c,f) components. Figure 8a–c displays the
symmetric part of the spectrum, while Figure 8d–f presents the antisymmetric part. The
respective raw power spectra of each diagram are shown in Figure S3 of the supplementary
material [18]. Observational evidence of WIG waves was first reported by Takayabu [45],
and it has been shown that these waves are responsible for the so-called two-day oscillations;
see [66] and references therein. In addition, the WIG modes are particularly important, as
they have been invoked to explain the large-scale envelope of the MJO as a result of the
interaction between WIG and eastward inertia-gravity (EIG) waves; for instance, see [67].
The wavenumber-frequency spectra obtained from the WIG mode contribution to the zonal
wind field displayed in Figure 8 reveal a number of surprising aspects with respect to WIG
wave propagation that strongly depart from the assumptions of free linear theory. Indeed,
in Figure 8a it can be noted that the symmetric part of the spectrum exhibits a strong spectral
peak in the vicinity of the WIG wave dispersion relation for wave-numbers k = 1–7, which
is in agreement with linear theory. However, strong spectral peaks are found along the
dispersion curve of the Kelvin waves with zonal wavenumbers 4–14. This result could be
an indicator of coherent nonlinear interaction and wave synchronization involving Kelvin
and WIG waves, as addressed in Section 5. This theoretical mechanism involving coherent
nonlinear interaction through phase synchronization has previously been explored in the
context of the barotropic nondivergent model [68], as well as in plasma physics [69] and
solar physics [70] contexts. Other significant spectral peaks are found along the dispersion
relation of the Rossby waves for k = 1–6. Figure 8 reveals other spectral peaks centered in the
intraseasonal timescale, which are probably associated with the Madden–Julian oscillation.
The baroclinic component of the symmetric part of the WIG wave spectrum presented
in Figure 8c largely resembles the spectrum presented in Figure 8a, suggesting that the
baroclinic component of the WIG waves is the dominant one, possibly due to the strong
coupling of these waves with moist convection [20]. In addition, the significant spectral
peak of WIG waves with eastward propagation and a typical period within the intraseasonal
timescale (T ∼ 30 days) can be associated with the possible aforementioned effect of the
WIG modes on the MJO dynamics through their interaction with EIG modes. The role of
inertio-gravity waves in the MJO dynamics is highlighted in a number of theories, such as
the gravity wave theory of the MJO [21,67], as well as the multi-cloud theory of convection
parameterization documented in Khouider and Majda [27] and Khouider and Majda [28].

Likewise, the significant spectral peak band of the WIG projected 200 hPa zonal wind
field over the dispersion curve of the Rossby modes observed in Figure 8 can be explained
by the theoretical mechanism proposed by Raupp and Silva Dias [71], in which the Rossby
modes can be excited by the resonant interaction of the inertio-gravity waves with the
diurnal cycle of tropical deep convection heating. This mechanism proposed by Raupp
and Silva Dias [71] is a linear wave interaction mechanism, similar to the interaction
between two wave modes through the background state, as is discussed in Section 6. In
addition, Raupp and Silva Dias [72] demonstrated that the resonant nonlinear interactions
involving two baroclinic WIG waves and a barotropic Rossby mode can yield amplitude
modulations of the WIG waves on the intraseasonal timescale when one of the WIG modes
is resonantly excited by a diurnally varying heat source. Consequently, these nonlinear triad
interactions can account for the intraseasonal spectral peaks of the WIG modes observed in
Figure 8.

The power spectrum of the antisymmetric part, on the other hand, is much weaker,
as can be observed in Figure 8d for the full vertical mode spectrum as well as for its
decomposition into barotropic (Figure 8e) and baroclinic (Figure 8f) components.

Figure 9 is similar to Figure 8, except that it displays the wavenumber-frequency
spectrum of the WIG mode contribution for the meridional wind field. The respective raw
power spectra of each diagram are shown in Figure S4 of the supplementary material [18].
We analyze the wavenumber-frequency spectrum of the WIG projected meridional wind
field to confirm that the spectral peak over the dispersion curve of the Kelvin wave observed
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in Figure 8 is indeed associated with WIG modes. This ensures that the spectrum displayed
in Figure 8 do not contain any noise from the Kelvin wave activity, as Kelvin modes do
not contribute to the meridional wind field. In fact, the significant power signal over the
dispersion curve of the Kelvin modes is observed in Figure 9d–f as well, confirming that
the strong spectral peak over the Kelvin wave dispersion relation observed in Figure 8a–c is
indeed due to WIG modes. In addition, Figure 9e shows that barotropic WIG modes exhibit
a strong spectral peak over their dispersion curve for zonal wavenumber 1–5. Another
feature that can be noted by comparing Figures 8 and 9 refers to the difference between
the zonal and meridional wind spectra regarding the k = 0 WIG modes. While the zonal
wind field exhibits no signal at the k = 0 modes, the meridional wind field spectra exhibit
a strong power over the zonal wavenumber k = 0 for a broad range of time frequencies.
This feature is due to the fact that, according to the normal mode function theory [34,35,73],
the zonal wind field associated with the k = 0 inertio-gravity modes is identically zero for
all the meridional quantum numbers and vertical modes.

The wavenumber-vertical mode spectrum of the WIG waves (Figure 10) differs from
that of the rotational modes in that the primary peak in the vertical mode index is charac-
terized by a baroclinic structure in the troposphere (m = 6–9). This result can be expected,
as the divergent modes are more directly coupled with moist convection.

(a) (b) (c)

(d) (e) (f )

H=12m

Figure 8. Wavenumber-frequency spectrum of the 200 hPa zonal wind field associated with the
westward inertio-gravity modes. Panels (a–c) refer to the symmetric part, while panels (d–f) refer to
the antisymmetric part. The full spectrum of vertical modes is presented in panels (a,d), the barotropic
component of the corresponding parts is displayed in panels (b,e), and the baroclinic component is
illustrated in panels (c,f).
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Figure 9. Wavenumber-frequency spectrum of the 200 hPa meridional wind field associated with the
westward inertio-gravity modes. Panels (a–c) refer to the antisymmetric part, while panels (d–f) refer to
the symmetric component of the meridional wind field. The full spectrum of vertical modes is presented
in panels (a,d), the barotropic component of the corresponding parts is displayed in panels (b,e), and the
baroclinic component is illustrated in panels (c,f). Recall that the symmetric (antisymmetric) component
of the meridional wind field corresponds to the antisymmetric (symmetric) modes.
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Figure 10. Energy spectrum of the westward inertio-gravity mode component of the atmospheric
oscillations as a function of the zonal wavenumber and vertical mode.
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4.4. Eastward Inertio-Gravity (EIG) Modes

The wavenumber-frequency spectrum computed from the contribution of eastward
inertio-gravity (EIG) waves for the 200 hPa zonal wind field is presented in Figure 11. In this
normal mode reconstruction of the zonal wind field, the Kelvin waves are not considered,
as their contribution is analyzed separately in the next subsection. As in Figures 4, 6, and 8,
here panels a,b,c (d,e,f) display the symmetric (antisymmetric) part of the spectrum. In
addition, panels (a) and (d) refer to the calculations with the full set of vertical modes,
while panels (b) and (e) (c and f) display the results of the calculations with only the vertical
modes 1 ≤ m ≤ 5 (m ≥ 6). The respective raw power spectra of each diagram are shown
in Figure S5 of the supplementary material [18]. The symmetric part of the spectrum
(Figure 11a) shows a few isolated spectral peaks near the linear dispersion curve of the
planetary-scale EIG modes. The symmetric part of the spectrum for the barotropic EIG
modes (Figure 11b) presents a strong and broad peak on the Kelvin wave dispersion curve
within the zonal wavenumber range of k = 4–8; the same signal extends toward the EIG
dispersion curve for k = 8. There is an additional spectral peak at the WIG wave dispersion
curve at k = 7–9. The spectrum of the baroclinic EIG waves (Figure 11c) is quite similar to
the full EIG mode spectrum (Figure 11a). Its analysis shows moderate peaks close to the
dispersion relation of the Kelvin waves. This suggests that nonlinear interaction between
EIG and Kelvin modes may occur, for instance by Kelvin waves exciting EIG waves as they
propagate. Such nonlinear interaction involving Kelvin and EIG waves is likely to occur
after Kelvin wave breaking [74], as discussed in the next subsection. Narrower regions
of significant power are noticeable in the spectrum along the linear dispersion relation
of the EIG modes for low wavenumbers (k = 1–4), along with a moderate peak around
the 30-day period close to the dispersion relation of the equatorial Rossby waves at high
wavenumbers. For the antisymmetric part of the spectrum of the EIG modes, there is a
region with a high power peak following the dispersion relation of the first antisymmetric
EIG mode with low wavenumbers (k = 1–5).

(a) (b) (c)

(d) (e) (f )

H=12m

Figure 11. Wavenumber-frequency spectrum of the 200 hPa zonal wind field associated with the
eastward inertio-gravity modes. Panels (a–c) refer to the symmetric part, while panels (d–f) refer to
the antisymmetric part. The full spectrum of vertical modes is presented in panels (a,d), the barotropic
component of the corresponding parts is displayed in panels (b,e), and the baroclinic component is
illustrated in panels (c,f).
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Therefore, the results displayed in Figure 11 suggest that the EIG modes generally
seem to be slave modes, with their propagation being determined by other waves such as
the Kelvin and Rossby modes. The wavenumber-vertical mode spectrum of the EIG modes
presented in Figure 12 is similar to that of the WIG modes, with a primary peak in the
vertical mode index around m = 6–10 and the energy decaying with the zonal wavenumber.

There is a longstanding problem in tropical dynamics around understanding the lack
of strong and broad spectral power along the dispersion relation of the EIG modes other
than the first antisymmetric one, for instance, when observed from the OLR field [19]. The
results presented in this section show that the spectral peaks on the symmetric part are
weak (or at most moderate) and are isolated along the EIG mode dispersion relation, which
is in agreement with previous investigations [4,19,45].
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Figure 12. Energy spectrum of the eastward inertio-gravity wave component of the atmospheric
oscillations as a function of the zonal wavenumber and vertical mode.

4.5. Kelvin Modes

The wavenumber-frequency spectrum computed from the contribution of the Kelvin
waves for the 200 hPa zonal wind field is presented in Figure 13. Figure 13a refers to the
calculations with the full set of vertical modes, while Figure 13b,c refers to the spectral
reconstruction of the zonal wind field with only the barotropic (1 ≤ m ≤ 5) and baroclinic
(m ≥ 6) components, respectively. The respective raw power spectra of each diagram are
shown in Figure S6 of the supplementary material [18].

Figure 13a shows a narrow peak with high power around the zonal wavenumber
k = 1 and the intraseasonal timescale (30–70 days). This observed spectral peak is probably
a manifestation of the role of the Kelvin mode in the morphology of the Madden–Julian
Oscillation. For instance, Žagar and Franzke [39] performed a linear regression between
the MJO multivariate index RMM1 [75] and the spectral coefficients associated with the
normal mode function decomposition of the global reanalysis field data; they showed
that the peaks of the MJO variance spectrum are due to: (i) the k = 0 barotropic Rossby
modes with the meridional quantum number n = 1 and (ii) the Kelvin and n = 1 Rossby
modes, both having zonal wavenumber 1 and vertical modes m = 7–8, which are associated
with the vertical structure of the typical tropical circulation response to deep convection
heating. As discussed in Section 4.1, the k = 0 barotropic Rossby modes are related to
the super-rotation characteristic of the MJO. Furthermore, regarding these planetary-scale
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wave modes associated with the MJO variability, Raphaldini et al. [76] have suggested that
the Kelvin mode is the first to be excited, afterwards transferring energy to the baroclinic
Rossby modes. In addition, it can be noted from Figure 13a that there is significant power
in the intraseasonal range of frequencies for larger wavenumbers (k = 9–15), suggesting
that these Kelvin modes contribute significantly to the variability of the MJO. Another
point to be noted in Figure 13 is that the Kelvin waves with intermediate wavenumbers
(k = 3–9) do not seem to exhibit a significant contribution to the MJO variability. In
Figure 13a, a broad spectral signal can be observed along the linear dispersion relation of
the Kelvin waves encompassing wavenumbers 5–15, along with significant power signals
over high wavenumbers for both the eastward and westward components of the spectrum.
These strong spectral signals over high wavenumbers are present for both the barotropic
(Figure 13b) and baroclinic (Figure 13c) components of the Kelvin mode, suggesting an
intrinsically turbulent nature associated with the Kelvin mode spectrum.

(a) (b) (c)

H=12m

Figure 13. Wavenumber-frequency spectrum of the 200 hPa zonal wind field associated with the
Kelvin modes. The full spectrum of vertical modes is presented in panel (a), while panels (b,c) refer
to the barotropic and baroclinic components, respectively.

A possible explanation is that this turbulent nature of the Kelvin wave spectrum
results from Kelvin wave breaking. In fact, as the Kelvin wave is non-dispersive, all of
its harmonics are resonant with each other, meaning that a strong nonlinear interaction
among all the wavenumbers composing this wave packet is allowed. In turn, this strong
nonlinear interaction involving the Kelvin wave harmonics implies that as a Kelvin wave
propagates eastward it steepens and breaks, resulting in a strong energy cascade towards
high wavenumbers. The nonlinear dynamics of the equatorial Kelvin wave has been
explored by Boyd [77] and Ripa [78]; these authors demonstrated the possibility of a
nonlinear Kelvin wave steepening and breaking in a finite time. Boyd [74] demonstrated
the possibility of a nonlinear Kelvin mode exciting eastward inertio-gravity modes after
breaking; this excitation is related to asymptotic matching between the wave frequencies
associated with high wavenumbers of both Kelvin and eastward inertio-gravity modes,
implying a resonance between these two wave packets. In addition, a nonlinear Kelvin
wave packet can excite specific harmonics of westward-propagating wave modes in the
presence of variable topography [79].

Therefore, the formation of Kelvin wave fronts and their subsequent excitation of other
wave modes may explain the strong signals at high wavenumbers observed in Figure 13.
This turbulent character related to Kelvin wave activity suggests that a wavelet transform
would be more appropriate for analyzing the observed space–time spectrum for the Kelvin
mode, even for a global and long-period dataset. Indeed, the longitude–time spectrum of
equatorial wave disturbances has previously been studied by adopting wavelet transforms
to better analyze their local longitudinal features and/or time variations; for instance,
see [80,81]. In a future work, we intend to extend the analysis in the present paper by
employing a wavelet rather than a Fourier transform.

As in the corresponding spectra of the inertio-gravity waves, the wavenumber-vertical
mode spectrum of the Kelvin waves (Figure 14) shows a primary peak for vertical indices
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associated with a baroclinic structure in the troposphere m = 6–10, a signature of the
important role of these waves in organizing convective activity in the tropics (Figure 13c).

4.6. Mixed Rossby-Gravity (MRG) Waves

Because MRG waves have a negligible contribution to the zonal wind field, we com-
puted the wavenumber-frequency spectrum based on the contribution of MRG waves to
the 200 hPa meridional wind field. The resulting spectrum is illustrated in Figure 15. The
respective raw power spectra of each diagram are shown in Figure S7 of the supplementary
material [18]. Figure 15 shows that the MRG mode spectrum is dominated by a narrow and
elongated peak with wavenumbers k = 5–6 and a characteristic timescale of T ∼ 6–30 days
with westward propagation, along with a secondary peak with eastward propagation
around wavenumbers k = 5–10 and a characteristic timescale of T ∼ 3–30 days (Figure 15a).
The spectra computed from the corresponding barotropic and baroclinic components are
similar. However, the barotropic component shows a more intense concentration of the
power spectrum around these regions and an elongation of the eastward-propagating struc-
tures towards lower frequencies (Figure 15b). The wavenumber-vertical mode spectrum
(Figure 16) of the MRG modes shows strong dominance of the barotropic structure in the
troposphere m = 1–4, with a slowly decaying signal with the zonal wavenumber up to
k ∼ 8, along with a steeper slope for larger wavenumbers.
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Figure 14. Energy spectrum of the Kelvin mode component of the atmospheric oscillations as a
function of the zonal wavenumber and vertical mode.

(a) (b) (c)
H=12m

Figure 15. Wavenumber-frequency spectrum of the 200 hPa meridional wind field associated with
the mixed Rossby-gravity modes having (a) the full vertical mode spectrum, (b) a barotropic structure
in the troposphere (m ≤ 5), and (c) a baroclinic structure in the troposphere (m ≥ 6).
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Figure 16. Energy spectrum of the mixed Rossby-gravity mode component of the atmospheric
oscillations as a function of the zonal wavenumber and vertical mode.

5. The Kelvin–WIG Interaction: A Case Study

Thus far, we have presented the observed frequency-wavenumber spectra of normal
mode decomposed atmospheric fields and verified discrepancies between the obtained spec-
tra and those expected according to the free/dry linear theory. As discussed in Section 6,
there are a number of mechanisms that can potentially modify the propagation speed of
waves, including the Doppler-shift effect due to a non-resting background zonal wind
field [82], coupling of waves with moist convection [4,83], and advective nonlinearity [68].
Because the possible nonlinear interactions involving the different wave types are too
diverse to be described here, we choose to focus on the case that appears the most out-
standing, namely, WIG waves presenting spectral signals comparable with the Kelvin wave
frequencies. This situation is illustrated in Figure 8, and is particularly the case for the
baroclinic components (Figure 8c).

The shape of the observed WIG spectrum suggests an interaction with Kelvin waves,
as confirmed by the similarity between the observed spectra of the WIG contribution to
both zonal and meridional components of the 200 hPa wind field (Figures 8 and 9).

Figure 17 shows the time–longitude propagation diagram, or Hovmoller diagram, for
the WIG wave 200 hPa meridional wind field (a), the WIG wave 200 hPa zonal wind field
(b), and the Kelvin wave 200 hPa zonal wind field (c), with the Hovmoller diagram of the
outgoing longwave radiation (OLR) (d) displayed as an independent basis of comparison.
In order to select a specific region of the spectrum where both Kelvin and WIG waves
have a strong signal, we utilized a filter that retains only zonal wavenumbers k = 4–6 and
periods shorter than 10 days, a spectral region where Kelvin waves typically present a
strong peak. All the variables of the Hovmoller diagrams described above were averaged
over the latitudinal belt of 5◦ S to 5◦ N.

From Figure 17a,b, it can be seen that there are intervals in which the WIG waves
propagate westward and periods in which these modes propagate eastward. This inversion
of the propagation direction is evidence that the observed eastward propagation of WIG
waves may not be due to the well-known Doppler-shift effect related to the background
zonal wind velocity, because an inversion of the mean zonal wind field at the equator in
a synoptic time-scale would be necessary to explain the observed behavior of the WIG
modes. The Hovmoller diagram for the OLR field shows a strong resemblance to the
propagation pattern of the WIG waves. The OLR field does not undergo the normal mode
decomposition; rather, the dataset is from an independent data source (NCEP reanalysis).
Therefore, this result can be viewed as strong evidence that (i) the WIG waves have a strong
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influence on the convective activity and (ii) the observed eastward propagation of the WIG
waves is indeed physical.

Furthermore, it can be noted that the period of the strongest eastward propagation of
WIG waves coincides with one of the periods in which the Kelvin wave signal is strongest,
namely, mid-late January 2004 at around the longitude of 100◦. This suggests that in
this particular period there is strong nonlinear interaction between these wave types. In
order to quantify the interaction between the WIG and Kelvin waves, we calculated the
coherence in terms of their zonal velocity fields. The results, displayed in Figure 18, show a
strong and statistically significant coherence between the WIG and Kelvin wave signals,
especially in the period range of 5–10 days. By separating this analysis into seasons, it is
apparent that this coupling tends to be stronger during the southern hemisphere summer
(December-January-February), suggesting that moist convection activity could be a key
element in the coupling between WIG and Kelvin waves.

(a) (b) (c) (d)

Figure 17. Hovmöller diagram of (a) the 200 hPa meridional wind field due to westward inertio-
gravity waves, (b) the 200 hPa zonal wind field due to westward inertio-gravity waves, (c) the 200 hPa
zonal wind field associated with Kelvin waves, and (d) the OLR field. All fields were averaged over
the latitudinal belt of 5◦ S–5◦ N and filtered in space and time by removing signals with periods
higher than 10 days and keeping only those signals with zonal wavenumbers between 4 and 6.
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Figure 18. Absolute value of the coherence between the westward inertio-gravity and Kelvin wave
zonal wind fields at 200 hPa, averaged from 5S to 5N, from 1980 to 2010. The frequency of 1

60 day−1

refers to the minimum frequency considered.
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6. Possible Theoretical Mechanisms for the Modification of the Wave Frequencies

In light of the results presented in Section 4, which show that several of the observed
equatorial wave spectra exhibit significant departures from the assumptions of dry linear
theory, in this section we review the mechanisms that could potentially modify the mode
eigenfrequencies, and as such may be responsible for these observed departures. For this
purpose, recall that if we substitute the spectral expansion (17) into Equation (3), it follows
that the spectral amplitudes evolve in time according to

Aa(t) = Aa(0)exp(−iωat).

In the equation above, we use a simplified notation for the mode indices in which the
subscript a indicates a single normal mode characterized by its zonal wavenumber k, a
vertical mode index m, a meridional quantum index n, and a wave type labeled α, namely,
a = (ma, ka, na, αa). Therefore, for the linearized perturbation equations around a resting
background state, each eigenmode evolves independently according to its own oscillation
frequency. Nevertheless, in a more complex scenario containing the advective nonlinearity,
a more complex background state (e.g., having a meridionally and/or vertically varying
shear flow), and a parametric forcing associated with a cumulus convection parameteri-
zation, if one assumes a solution as a normal mode expansion according to (17) then the
spectral amplitudes satisfy a set of ordinary differential equations of the form

dAa

dt
− iωa Aa = ∑

b
∑

c
σbc

a Ab Ac + ∑
b

ηb
a Ab + ∑

b
Cb

a Ab (24)

In Equation (24), the RHS indicates the mechanisms that can potentially modify the
mode eigenfrequencies. As is apparent from (24), the corresponding terms for the governing
equations modeling these mechanisms do not hold a diagonalized representation in terms
of the eigenmodes, meaning that σbc

a , ηb
a , and Cb

a are coupling coefficients among different
eigenmodes, as explained below. The first term in the RHS of (24) refers to the projection of
the advective nonlinearity onto a particular eigenmode a, with σbc

a representing a measure
of the nonlinear coupling among each triplet of modes {a, b, c} satisfying the so-called
Elssaesser’s selection rules [68] and with the triad configuration resulting from the quadratic
nature of the advective nonlinearity. For weak nonlinearity, the time frequencies of the wave
modes are not significantly changed from their corresponding eigenvalues (ωa, ωb, and
ωc); in this case, the effect of nonlinearity is to yield a modulation in the wave amplitudes
associated with an energy exchange among the interacting modes. These energy exchanges
occur on longer timescales than the period of the waves, and are restricted to wave-modes
with linear eigenfrequencies that satisfy the resonance condition ωa ± ωb ± ωc ≈ 0. An
example is that of resonant triads involving a barotropic Rossby mode and two equatorial
WIG modes, as studied by Raupp and Silva Dias [72], in which the amplitude modulation
occurs on an intraseasonal time-scale. In contrast, beyond the weakly nonlinear regime,
apart from the amplitude modulation associated with the energy exchanges among the
waves, the wave phases (and consequently the time frequencies of the wave modes) can be
significantly modified as well. For example, Raphaldini et al. [68] studied nonlinear wave
interactions in the barotropic nondivergent model to analyze the role of the wave phases
in the energy exchanges among different interacting wave triads. They showed that the
phase propagation of the wave modes can be completely modified in the amplitude regime
in which the inter-triad energy flow is maximized, with modes propagating even in the
opposite direction from that predicted by linear theory. According to Raphaldini et al. [68],
this amplitude regime is characterized by a kind of synchronization among the wave
phases in which the fully nonlinear phase of an interacting wave triplet does not change
in time. As discussed in the previous section, it is possible that a similar synchronization
involving Kelvin and westward propagating inertio-gravity waves may be responsible for
the modification of the frequency of the latter modes, as indicated by Figure 8.
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The second term in the RHS of Equation (24) refers to the projection of the linear
terms involving a background state having a meridionally/vertically varying shear flow
onto a particular eigenmode a. The effect of such a background state on the normal-mode
dynamics can be understood in terms of the possible limiting cases. In the limiting case,
in which the magnitude of the background flow is of the same order as the disturbances’
amplitude (weak background flow), the background flow acts as a normal mode with zero
zonal wavenumber and zero eigenfrequency. In this case, the role of the background flow
is to act as a catalyst mode, that is, to enable two wave-modes a and b to exchange energy
while maintaining its own amplitude/energy unchanged in time. This mechanism has
been evoked to explain the tropical–extratropical teleconnections generated by tropical
heat sources [84–86]. According to this conjecture, the vertical shear of the background
flow allows the equatorially trapped wave-modes having a baroclinic structure within the
troposphere (directly forced by tropical heat sources) to excite barotropic Rossby modes
having a large midlatitude projection. In fact, Raupp et al. [42] demonstrated that baroclinic
mixed Rossby-gravity modes having zonal wavenumbers k ≥ 4 are resonantly coupled
with barotropic Rossby modes with meridional quantum number n = 2 through the
baroclinic component of the zonally symmetric geostrophic modes having even symmetry
about the equator. According to Raupp et al. [42], for the initial amplitudes characterizing
physically reasonable atmospheric flow perturbations, these wave modes exchange energy
on an intra-seasonal time scale.

On the other hand, for a background flow with a magnitude much higher than the
perturbations’ amplitude, another possible limiting case is when the background flow varies
on a longer spatial scale than the wave phases, which is called WKB approximation. In this
case, the effect of the background flow is to modify the propagation of the wave modes
by changing their time frequencies in comparison with the corresponding eigenvalues for
a resting basic state. This effect has been studied by Zhang and Webster [82], Wang and
Xie [86] and Lim and Chang [87] in the equatorial wave context and Kasahara [88] in the
context of the spherical normal modes. As mentioned in Section 5, it is unlikely that this
effect is responsible for the most outstanding departures of the observed spectrum from the
dry linear theory, namely, the case of the WIG modes exhibiting spectral signals over the
Kelvin wave dispersion curve displayed in Figure 8, because the periods when the WIG
modes propagate eastward are intermittent and consequently would require inversion of
the background zonal wind field on a synoptic timescale.

Another possible regime refers to background flows having magnitude much higher
than the waves and comparable spatial variations. In this case, apart from the modifi-
cation of the mode propagation, instability is possible, and certain eigenmodes exhibit
complex-valued time frequencies. These eigenmodes undergo exponential growth in their
amplitudes until the breakdown of the linear approximation, with the nonlinear saturation
yielding energy transfers throughout the spectral space until a stationary state is achieved.
An example is the baroclinic instability spectrum discussed in Section 4.2. In practice,
for an arbitrary background zonal flow with a meridional/vertical shear, all the above
mentioned mechanisms are at work, namely, (i) the catalyst zero-frequency mode effect,
(ii) the Doopler-shift effect on the wave propagation, and (iii) the linear wave instability. For
example, Kasahara [60] studied the interplay between mechanisms (i) and (iii) by reference
to a background zonal flow with both meridional and vertical shear, demonstrating in the
linear context the effect of baroclinic instability in enhancing the midlatitude barotropic
Rossby wave signal initially generated by the effect of the vertical shear of the background
flow on coupling these barotropic modes with thermally forced tropical waves. On the
other hand, this catalyst mode effect of the background flow allows a barotropic Rossby
mode to excite an equatorially trapped wave mode [42]. Thus, it is possible that baroclinic
instability contributes to the observed spectral peaks of tropical disturbances presented in
Section 4 by the excitation of these barotropic Rossby waves. This midlatitude influence on
tropical wave dynamics needs to be further investigated in the future.
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The third term in the RHS of Equation (24) refers to the projection of a linear parame-
terization of the convective heating onto a particular eigenmode a. In the case of a nonlinear
parameterization, this parametric forcing would be included in the first term in the RHS
of (24). The mechanism represented by this parametric forcing term refers to the coupling
of the equatorial wave modes with moist convection [89]. The role of this mechanism on
the normal mode dynamics is analogous to the background state, in that it can: (i) couple
two wave modes a and b, and consequently yield an energy exchange between them;
(ii) modify the propagation of the wave modes; and (iii) yield a linear wave instability. The
basic idea of role (ii) is that the coupling between a large-scale wave and moist convection
reduces the effective static stability parameter of the atmosphere in comparison with the
corresponding value of a dry atmosphere, resulting in a smaller equivalent depth Hma and
a slower propagation speed compared to what is expected from the normal mode theory of
a dry atmosphere. Roles (ii) and (iii) in reference to the coupling of equatorial waves with
moist convection have been demonstrated in the atmospheric science literature using dif-
ferent diabatic heating parameterizations, including the Wave-CISK, e.g., [90,91], boundary
layer frictional convective convergence [92], multi-cloud [27,28,93], and WISHE-moisture
mode [94–96] parameterizations. In addition, role (i) with regard to convective heating has
been demonstrated by Raupp and Silva Dias [71], who showed that the resonant coupling
between Rossby and inertio-gravity modes through the diurnal cycle of the background
moisture field yields an energy exchange between these wave modes.

Role (ii) with respect to convective heating is evident in the observed wavenumber-
frequency power spectrum of the full 200 hPa zonal wind field displayed in Figure 4, which
shows the coincidence of certain spectral peaks over the dispersion curves of the wave
types for small equivalent depths. Likewise, as discussed in Section 4.3, it is possible that
the coupling between WIG and rotational modes through resonance with the diurnal cycle
of tropical heating be responsible for the high spectral signals of the WIG decomposed zonal
wind field on the Rossby wave dispersion curve observed in Figure 8. In addition, coupling
with moist convection can enhance the potential for other mechanisms to modify the mode
propagation. An example is the interplay between convective heating and nonlinearity, in
which the wave instability produced by the former enhances the effect of the latter on wave
propagation by increasing the amplitude of the wave mode.

7. Discussion

In the present study, we have analyzed the observed spectra of equatorial disturbances
by computing the wavenumber-frequency spectrum of normal mode decomposed dynami-
cal fields obtained from Era-Interim (ERAI) reanalysis data. In this approach, the large-scale
atmospheric dynamical fields are projected onto the normal mode functions, defined as the
eigensolutions of the compressible primitive equations in spherical coordinates linearized
around a resting background state. From filtered versions of the spectral reconstruction of
these dynamical field variables, we have computed the wavenumber-frequency spectrum
using the methodology proposed by Wheeler and Kiladis [18] for the 200 hPa wind field
considering only single mode types (Rossby, Kelvin, WIG, EIG, and MRG modes) as well
as their tropospheric barotropic and baroclinic components. In this approach, the corre-
sponding variable is averaged in the tropical belt (i.e., from 15◦ S to 15◦ N) and then Fourier
transformed regarding its longitude–time dependence, with the original k−ω spectrum
divided by a background spectrum obtained from a smoother version of the former to better
evidence the local maxima. Unlike other studies in the literature that analyzed the OLR
spectrum to focus on the coupling of the waves with moist convection, e.g., [16,18,32,45],
here we have primarily analyzed the dynamical field variables to investigate departures of
the wave spectra from the results predicted by linear theory.

Our results show several aspects that agree with linear theory; for instance, the
barotropic Rossby modes show a spectral peak that clearly follows their dispersion relation.
As the barotropic Rossby modes exhibit a global meridional structure and are the most
excited by baroclinic instability, this spectral peak is believed to be the midlatitude signature
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on the tropical wave dynamics. In addition, part of the Kelvin mode power spectrum
follows the results predicted by linear theory, with an elongated spectral peak seemingly of
a non-dispersive character propagating eastwards. In addition, part of the power spectrum
obtained for the WIG modes, corresponding to wavenumbers k = 3–7, follows the linear
dispersion relation.

On the other hand, we found several spectral peaks that largely depart from the results
expected based on linear theory. First, for Kelvin waves, we verified a rather complex
energy distribution throughout the wavenumber-frequency space, with strong power at
high wavenumbers for a broad range of frequencies. A possible explanation for this result
stems from the non-dispersive nature of the Kelvin wave, which implies a strong nonlinear
coupling among all of its harmonics, leading to wave breaking and shock formation in a
finite time [77,78]. Similarly, the obtained wavenumber-frequency spectra for the inertio-
gravity waves show peaks over the dispersion relation of other wave modes. For instance,
the power spectrum obtained for the EIG modes, especially for their barotropic component,
clearly follows the dispersion relation of the Kelvin waves, while the spectrum obtained
for the WIG modes shows peaks along the dispersion curves of equatorial Rossby waves,
barotropic Rossby waves, MJO and Kelvin waves. These results suggest the potential role
of different nonlinear mechanisms in the dynamics of the inertio-gravity wave modes,
namely: (i) the resonant nonlinear triad interactions involving a barotropic Rossby mode
and two equatorial inertio-gravity wave modes [72], (ii) the resonant nonlinear interaction
involving Kelvin and short-wavelength EIG modes [74], (iii) the EIG-WIG wave interaction
mechanism proposed to explain the MJO [67], and (iv) the coherent nonlinear interaction
by phase synchronization [68,69,97] involving WIG and Kelvin modes.

Among all the above-mentioned nonlinear interactions, we have focused on the anal-
ysis of mechanism (iv) involving Kelvin and WIG waves, considering the clear eastward
propagation pattern verified in the observed spectra of the WIG decomposed zonal wind
field displayed in Figure 8 with frequencies comparable with those of Kelvin waves. In
fact, the Hovmoller diagrams of the WIG filtered zonal and meridional velocities exhibit
inversions in the propagation direction together with the periods of coherent synchroniza-
tion with the Kelvin waves. Furthermore, the coherence analysis between Kelvin and WIG
waves reveals strong coupling between these two wave types on a timescale of 5–10 days.
This strong synchronization of the eastward propagation of the WIG waves with Kelvin
wave propagation suggests a strong nonlinear interaction between these two wave types.

In addition to nonlinearity, other mechanisms could be responsible for the departures
of the observed k−ω spectra of tropical disturbances from those predicted by dry linear
theory, such as a meridionally/vertically varying background state or coupling between
waves and moist convection. In fact, as discussed in Section 6, the linear interaction between
equatorial Rossby and inertio-gravity wave modes through resonance with the diurnal
cycle of the moisture field could, in the context of a deep convection parameterization [71],
be a possible explanation for the significant spectral peak of the WIG projected zonal
wind field over the equatorial Rossby wave dispersion relation. Moreover, apart from the
baroclinic instability, a vertically sheared background flow works as a catalyst mode for
the interaction between barotropic Rossby and equatorially trapped (i.e., baroclinic) wave
modes [42,84,86]. Consequently, in addition to the spectral signal of barotropic Rossby
modes, it is possible that baroclinic instability might contribute to the spectral peaks over
the dispersion curves of equatorial (baroclinic) Rossby, MRG, and Kelvin waves. We intend
to investigate this point in future work.

Apart from the above-mentioned linear wave interaction mechanism through the
diurnal cycle of convective heating, the role of coupling with moist convection in the
modification of wave frequencies is clear in the observed equatorial wave spectra presented
in Section 4.1. These results show spectral peaks over the dispersion curves referring to
smaller equivalent depths than the corresponding values for the vertical mode that is
most excited by deep convection heating in the tropics. In addition, coupling with moist
convection may enhance the potential of other mechanisms to modify the mode eigenfre-



Atmosphere 2023, 14, 622 29 of 33

quencies. In particular, the interplay between convective heating and nonlinearity could be
a reasonable conjecture to explain the observed departures of the equatorial wave spectra
from the results predicted by linear theory. In this context, the wave instability produced by
the convective heating through the growth of the wave amplitudes could enhance the effect
of nonlinearity on the modification of the wave frequencies. This conjecture is corroborated
by recent studies that have revisited the geostrophic adjustment problem in the tropics in
the presence of moist convective processes [98,99]. In particular, Rostami and Zeitlin [99]
used a two-layer moist-convective nonlinear shallow water model; they showed that Kelvin
and Rossby modes can fuse into a hybrid structure linked through a region of enhanced
condensation and that this region is related to westward inertio-gravity waves.

Another important result refers to the analysis of the EIG mode power spectra, which
shed light on the question of the absence of strong and broad spectral power peaks in the
vicinity of the EIG mode dispersion relation (with the exception of the first antisymmetric
one, which is a continuum of the eastward extension of the MRG modes). This fact was first
highlighted by Takayabu [45] and by the subsequent work of Wheeler and Kiladis [18] on
the OLR field. Here, only weak and isolated power peaks are found along the dispersion
relation of these EIG modes, especially for their baroclinic component, which is the one
that mostly contributes to the convective activity and consequently to the OLR field. Thus,
further theoretical investigations need to be carried out in the direction of understanding
the lack of strong spectral peaks on the wavenumber-frequency spectrum associated with
the baroclinic EIG modes. Likewise, although only large-scale modes (i.e., k ≤ 15) have
been analyzed here, smaller-scale convective activity associated with mesoscale systems is
believed to impact large-scale Kelvin waves as well [100]. Therefore, another important
extension of this work is to use reanalysis data with higher resolution and a wavelet
transform to obtain the equatorial wavenumber-frequency power spectra associated with
the normal mode decomposed field data in order to more accurately represent the spectrum
of the Kelvin wave as well as its interaction with inertio-gravity waves.
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